ESTAR ACTUALIZADO CADA DIA
APRENDIZAJE MATEMATICO DESDE LA
NEUROCIENCIA
Es evidente la
dificultad que tienen los niños en el aprendizaje matemático ¿qué nos dice la
neurociencia? ¿ Disponemos los seres humanos de una capacidad numérica innata?
De ser así ¿qué papel juega esta capacidad innata y podemos usarla para el
posterior aprendizaje matemático?
1. Sentido
numérico innato.
Karen Wynn
demuestra en sus estudios que los seres humanos disponemos de un sentido
numérico innato. Los bebés pueden distinguir operaciones con dos o tres
objetos, es por tanto una capacidad con un componente genético. Se ha
demostrado que nacemos con un concepto matemático numérico rudimentario que
se limita a los números naturales iniciales (como máximo hasta el 4),
esto quiere decir que ya en el primer año de vida los bebés son capaces de
discriminar entre dos ó tres objetos ( este proceso se conoce con el nombre
de subtizing).
2. Etapas del
aprendizaje matemático (re-visitando Piaget).
Debemos
aprovechar el sentido numérico innato para ir desarrollando un conocimiento
matemático más desarrollado. Este conocimiento inicial podríamos equipáralo a
la importancia de trabajar conciencia fonológica para el proceso de lectoescritura.
Sousa (2008)
identifica cinco niveles de comprensión del sentido numérico que permiten al
niño ir mejorando el conocimiento matemático.
- Etapa 1. El niño NO ha desarrollado
el sentido numérico más allá de sus conocimientos innatos, por tanto
muestra dificultades en entender las comparaciones entre cantidades y los
términos del tipo “más que/menos que” ó “mayor/menor”.
- Etapa 2. Empieza a adquirir el
sentido numérico que le permitirá entender conceptos como “muchos” “tres”
; pero NO conceptos como “más que” ó “menos que”.
- Etapa 3. Comprende plenamente el
significado de conceptos como “más que” o “menos que” y puede utilizar los
dedos para contar de uno en uno. Puede equivocarse en tareas que aparezcan
números más grandes que el cinco.
- Etapa 4. Puede contar sin
necesidad de dedos y empieza a entender la realidad conceptual de los
números.
- Etapa 5. Es capaz de recordar
estrategias para resolver problemas porque empieza a automatizar operaciones aritméticas
de las sumas y comienza a entender conceptos básicos de las restas.
3. Factores
esenciales para la enseñanza de las matemáticas.
A partir de lo
expuesto, podemos establecer algunos factores esenciales para la enseñanza de
la aritmética desde la perspectiva neurológica:
- Nuestro cerebro prefiere lo concreto
a lo abstracto, es necesario entender primero el sentido numérico no
simbólico.
- Nuestro cerebro aprende a través de la
predicción + asociación con patrones (ver este
post) podemos introducir conceptos matemáticos a la vida de los
niños para practicar estimaciones y predicciones.
- Nuestro cerebro se satura cuando
utiliza muchos datos en la memoria de trabajo, es imprescindible
automatizar operaciones aritméticas para no dedicar todos los recursos al
cálculo y poder así dedicar parte de los recursos al análisis y
razonamiento de los problemas.
- Nuestro cerebro procesa los números utilizando
tres procedimientos distintos (visual, verbal y cuantitativo) en los que
se activan regiones cerebrales distintas debemos activarlos todos mediante
actividades con un enfoque multisensorial.
- Nuestro cerebro es
extraordinariamente plástico (ver este
post) y modifica su forma en función de la experiencia ,
cualquier niño puede mejorar su desempeño incluso aquellos niños
padecen discalculia.
No hay comentarios:
Publicar un comentario